A new view to the structure of ^{19}C

R. Kanungo^{1,a}, M. Chiba¹, B. Abu-Ibrahim², S. Adhikari^{3,4}, D.Q. Fang⁵, N. Iwasa⁶, K. Kimura⁷, K. Maeda⁶,

S. Nishimura¹, T. Ohnishi¹, A. Ozawa⁸, C. Samanta^{3,4}, T. Suda¹, T. Suzuki⁹, Q. Wang¹⁰, C. Wu¹⁰, Y. Yamaguchi¹,

K. Yamada¹, A. Yoshida¹, T. Zheng¹⁰, and I. Tanihata^{1,b}

¹ RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
² Department of Physics, Caine University, Circ 12612, Ferry

² Department of Physics, Cairo University, Giza 12613, Egypt
 $\frac{3}{2}$ Soba Institute of Nueleer Physics, $\frac{1}{4}$ E. Bidhennesser, Kelli

- ³ Saha Institute of Nuclear Physics, $1/AF$, Bidhannagar, Kolkata 700064, India
⁴ Virginia Commonwealth University, Bichmond, VA 23284, USA
- ⁴ Virginia Commonwealth University, Richmond, VA 23284, USA
- ⁵ Sanghai Institute of Nuclear Research, Chinese Academy of Sciences, Shanghai 201800, PRC
⁶ Desertional of Dharias Tabalay University Miyesi 080,8578. Japan
- ⁶ Department of Physics, Tohoku University, Miyagi 980-8578, Japan $\frac{7}{4}$ Department of Electric Electronics and Computer Engineering. No
- ⁷ Department of Electric, Electronics and Computer Engineering, Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan
- 8 Institute of Physics, University of Tsukuba, Ibaraki, 305-8571, Japan
- ⁹ Department of Physics, Saitama University, Saitama 338-8570, Japan
- ¹⁰ Department of Technical Physics, Peking University, Beijing 100871, PRC

Received: 15 February 2004 / Revised version: 23 March 2004 / Published online: 3 August 2005 – \copyright Società Italiana di Fisica / Springer-Verlag 2005

Abstract. The observation of longitudinal momentum distribution (P_{\parallel}) from two-neutron removal in ¹⁹C with a Be target at 64 A MeV is reported. Analysis in terms of Glauber model considering $^{19}C_{gs}(J^{\pi} = 1/2^+)$ shows that neutron evaporation is necessary to explain the data.

PACS. 25.60.Dz Interaction and reaction cross-sections – 25.60.Gc Breakup and momentum distributions

1 Introduction

The existence of one-neutron halo structure has been well established in two nuclei, namely, 11 Be [\[1\]](#page-1-0) and 15 C [\[2\]](#page-1-1), having abnormal ground-state spin $J^{\pi} = 1/2^{+}$. Such structures have been described by the $\text{core} + \text{n}$ halo model. The "core" nucleus in these examples are nuclei whose valence neutron orbital is filled. For sd-shell nuclei close to dripline, the "core" is a more complex nucleus. It is therefore a question of a $\text{core} + \text{n}$ decoupling is possible for them. One way to investigate this is the study of two-neutron removal from the nucleus of interest.

The isotopic chain of carbon nuclei interestingly shows an abrupt increase in interaction cross-section for two isotopes, namely ¹⁵C and ¹⁹C [\[3\]](#page-1-2). This feature, together with the relatively narrow momentum distribution [\[4,](#page-1-3) [5,](#page-1-4)[6\]](#page-1-5) for one-neutron removal suggested this nucleus to have a one-neutron halo structure. The large Coulomb dissociation cross-section [\[7\]](#page-1-6) also favoured the halo nature. These investigations suggested a ground-state spin of $J^{\pi} = 1/2^{+}$ for ¹⁹C which is supported by shell model

(WBP interaction) predictions [\[5\]](#page-1-4). The deformed Skyrme Hartree-Fock calculations however suggest ¹⁹C to have an oblate deformed structure with a ground-state spin of $3/2^+$ [\[8\]](#page-1-7), "nearly degenerate" with the $1/2^+$ excited state (320 keV).

In this article, we present a different view to the structure of ¹⁹C by measuring the P_{\parallel} from two-neutron removal. Interestingly, it appears that the distribution cannot be explained by a $\overline{J} = 1/2^+$ spin with ¹⁸C core primarily in its ground state, a structure necessary to form a halo.

2 Experiment

The experiment was performed at the RIKEN Ring Cyclotron facility. The secondary beam of ¹⁹C was produced by fragmentation of 22 Ne primary beam on a 2.5 mm thick Be target. The ¹⁹C beam further interacted with a 2 mm Be target placed at the first achromatic focus of the fragment separator. The momentum of the ¹⁷C fragment after the reaction target was derived from time-of-flight (TOF) measured using ultra-fast timing plastic scintillators. The momentum resolution was 10 MeV/c (σ) . The particle identification was done using ΔE -TOF-E with ionisation chamber (for ΔE) and NaI(Tl) (for E) in addition to the scintillators. The details are described in ref. [\[6\]](#page-1-5).

Conference presenter; Present address: TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; e-mail: ritu@triumf.ca

^b Present address: Argonne National Laboratory, 9700S Cass Avenue, Argonne, IL 60439, USA.

Fig. 1. (a) The possible paths for emitting two neutrons from ¹⁹C through the ground state and bound excited states of the "core" nucleus ¹⁸C. (b) The P_{\parallel} data (filled circles) for $^{19}{\rm C} \rightarrow$ $^{17}{\rm C}.$ The different curves show the Glauber model calculations for the respective emission paths shown in (a).

3 Results and analysis

Figure [1](#page-1-8) shows the P_{\parallel} data from two-neutron removal having a width (Γ) of 203 ± 10 MeV/c. The data is analysed in the framework of the few-body Glauber model [\[9\]](#page-1-9). Two different kinds of neutron removal processes have been considered. In the first approach, we consider neutron emission through bound states of the "core" ¹⁸C. The possible emission paths with J^{π} (¹⁹C) = 1/2⁺ are shown in fig. [1a](#page-1-8). The states of 17 C are based on shell model predictions. The resultant P_{\parallel} are shown, normalized to the peak of the data in fig. $\overrightarrow{1}$ b. All the emission paths lead to distributions which are wider than the data. The solid curve has a width $\Gamma = 300 \text{ MeV}/c$ while the others have widths around $\Gamma = 240$ MeV/c.

Another process of two-neutron emission is by neutron evaporation, i.e. through unbound excited states of the 18° C core. The resonances of 18° C have not yet been observed. They have thus been considered based on shell model predictions [\[10\]](#page-1-10) (fig. [2a](#page-1-11)). Figure [2](#page-1-11) shows the paths and the P_{\parallel} (normalised to the peak of data) for the different evaporation paths. It is observed that processes involving emission of d-wave neutrons lead to much wider $(\Gamma = 260 \text{ MeV}/c)$ distributions than the data. The s-wave emission ($\Gamma = 182$ MeV/c) and p-wave emissions $(T = 165 \text{ MeV}/c \text{ for } p_{3/2})$ are in agreement with the higher momentum side of the data. The emission from $p_{1/2}$ ($\Gamma = 115 \text{ MeV}/c$) is narrower than the data.

The above discussion suggests that the configuration of ¹⁹C having a ground-state spin of $1/2^+$ with the ¹⁸C

Fig. 2. (a) The possible paths for emitting two neutrons from ¹⁹C by neutron evaporation through unbound resonances of the intermediate nucleus ¹⁸C. (b) The P_{\parallel} data (filled circles) for ¹⁹C \rightarrow ¹⁷C. The different curves show the Glauber model calculations for the respective emission paths shown in (a).

core in the ground state and/or bound excited states only, cannot explain the P_{\parallel} from two-neutron removal. The explanation of the data is possible with the neutron evaporation process through unbound excited states of the ¹⁸C core. Thus, in the core + n model for ${}^{19}C(J^{\pi} = 1/2^+)$, the ¹⁸C core needs to be placed in unbound excited states too. This probably suggests that ${}^{18}C$ is not a good "core" for ¹⁹C. That maybe expected, since the ground state of ¹⁸C nucleus $(J^{\pi} = 0^+)$ itself has quite a complex structure. In a ${}^{17}C$ + n model, the ${}^{17}C$ core must be mainly in the excited states (5/2⁺ or 1/2⁺) with the neutron in $d_{5/2}$ or $2s_{1/2}$ orbitals respectively, because the ground-state spin of ¹⁷C is known to be $3/2^+$.

It must be mentioned that the data might also be explained by other ground-state spin considerations for ¹⁹C whose investigation is underway.

References

- 1. I. Tanihata et al., Phys. Lett. B 206, 592 (1988); S. Fortier et al., Phys. Lett B 461, 22 (1999).
- 2. E. Sauvan et al., Phys. Lett. B 491, 1 (2000); A. Ozawa et al., Nucl. Phys. A 693, 32 (2001); J.D. Goss et al., Phys. Rev. C 12, 1730 (1975).
- 3. A. Ozawa et al., Nucl. Phys. A 601, 599 (2001).
- 4. T. Baumann et al., Phys. Lett. B 439, 256 (1998).
- 5. V. Maddalena et al., Phys. Rev. C 63, 024613 (2001).
- 6. M. Chiba et al., Nucl. Phys. A 741, 29 (2004).
- 7. T. Nakamura et al., Phys. Rev. Lett. 89, 1112 (1999).
- 8. H. Sagawa et al., Phys. Rev. C 70, 054316 (2004).
- 9. Y. Ogawa et al., Nucl. Phys. A 543, 722 (1992).
- 10. B.A. Brown, private communication.