A new view to the structure of ¹⁹C

R. Kanungo^{1,a}, M. Chiba¹, B. Abu-Ibrahim², S. Adhikari^{3,4}, D.Q. Fang⁵, N. Iwasa⁶, K. Kimura⁷, K. Maeda⁶,

S. Nishimura¹, T. Ohnishi¹, A. Ozawa⁸, C. Samanta^{3,4}, T. Suda¹, T. Suzuki⁹, Q. Wang¹⁰, C. Wu¹⁰, Y. Yamaguchi¹, K. Yamada¹, A. Yoshida¹, T. Zheng¹⁰, and I. Tanihata^{1,b}

1 RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan

2 Department of Physics, Cairo University, Giza 12613, Egypt

- 3 Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
- 4 Virginia Commonwealth University, Richmond, VA 23284, USA
- $\mathbf{5}$ Sanghai Institute of Nuclear Research, Chinese Academy of Sciences, Shanghai 201800, PRC
- 6 Department of Physics, Tohoku University, Miyagi 980-8578, Japan
- 7Department of Electric, Electronics and Computer Engineering, Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan
- 8 Institute of Physics, University of Tsukuba, Ibaraki, 305-8571, Japan
- 9 Department of Physics, Saitama University, Saitama 338-8570, Japan
- ¹⁰ Department of Technical Physics, Peking University, Beijing 100871, PRC

Received: 15 February 2004 / Revised version: 23 March 2004 / Published online: 3 August 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. The observation of longitudinal momentum distribution $(P_{||})$ from two-neutron removal in ¹⁹C with a Be target at 64 A MeV is reported. Analysis in terms of Glauber model considering ${}^{19}C_{rs}(J^{\pi}=1/2^+)$ shows that neutron evaporation is necessary to explain the data.

PACS. 25.60.Dz Interaction and reaction cross-sections – 25.60.Gc Breakup and momentum distributions

1 Introduction

The existence of one-neutron halo structure has been well established in two nuclei, namely, ^{11}Be [1] and ^{15}C [2], having abnormal ground-state spin $J^{\pi} = 1/2^+$. Such structures have been described by the core + n halo model. The "core" nucleus in these examples are nuclei whose valence neutron orbital is filled. For sd-shell nuclei close to dripline, the "core" is a more complex nucleus. It is therefore a question of a $\operatorname{core} + n$ decoupling is possible for them. One way to investigate this is the study of two-neutron removal from the nucleus of interest.

The isotopic chain of carbon nuclei interestingly shows an abrupt increase in interaction cross-section for two isotopes, namely ¹⁵C and ¹⁹C [3]. This feature, together with the relatively narrow momentum distribution [4, [5,6] for one-neutron removal suggested this nucleus to have a one-neutron halo structure. The large Coulomb dissociation cross-section [7] also favoured the halo nature. These investigations suggested a ground-state spin of $J^{\pi} = 1/2^+$ for ¹⁹C which is supported by shell model

(WBP interaction) predictions [5]. The deformed Skyrme Hartree-Fock calculations however suggest ¹⁹C to have an oblate deformed structure with a ground-state spin of $3/2^+$ [8], "nearly degenerate" with the $1/2^+$ excited state (320 keV).

In this article, we present a different view to the structure of ¹⁹C by measuring the $P_{||}$ from two-neutron removal. Interestingly, it appears that the distribution cannot be explained by a $J = 1/2^+$ spin with ¹⁸C core primarily in its ground state, a structure necessary to form a halo.

2 Experiment

The experiment was performed at the RIKEN Ring Cyclotron facility. The secondary beam of ¹⁹C was produced by fragmentation of ²²Ne primary beam on a 2.5 mm thick Be target. The ¹⁹C beam further interacted with a 2 mm Be target placed at the first achromatic focus of the fragment separator. The momentum of the ¹⁷C fragment after the reaction target was derived from time-of-flight (TOF) measured using ultra-fast timing plastic scintillators. The momentum resolution was 10 MeV/c (σ). The particle identification was done using ΔE -TOF-E with ionisation chamber (for ΔE) and NaI(Tl) (for E) in addition to the scintillators. The details are described in ref. [6].

^a Conference presenter; Present address: TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; e-mail: ritu@triumf.ca

^b Present address: Argonne National Laboratory, 9700S Cass Avenue, Argonne, IL 60439, USA.

Fig. 1. (a) The possible paths for emitting two neutrons from ¹⁹C through the ground state and bound excited states of the "core" nucleus ¹⁸C. (b) The $P_{||}$ data (filled circles) for ¹⁹C \rightarrow ¹⁷C. The different curves show the Glauber model calculations for the respective emission paths shown in (a).

3 Results and analysis

Figure 1 shows the $P_{||}$ data from two-neutron removal having a width (Γ) of 203 ± 10 MeV/c. The data is analysed in the framework of the few-body Glauber model [9]. Two different kinds of neutron removal processes have been considered. In the first approach, we consider neutron emission through bound states of the "core" ¹⁸C. The possible emission paths with $J^{\pi}({}^{19}\text{C}) = 1/2^+$ are shown in fig. 1a. The states of ${}^{17}\text{C}$ are based on shell model predictions. The resultant $P_{||}$ are shown, normalized to the peak of the data in fig. 1b. All the emission paths lead to distributions which are wider than the data. The solid curve has a width $\Gamma = 300 \text{ MeV}/c$ while the others have widths around $\Gamma = 240 \text{ MeV}/c$.

Another process of two-neutron emission is by neutron evaporation, *i.e.* through unbound excited states of the ¹⁸C core. The resonances of ¹⁸C have not yet been observed. They have thus been considered based on shell model predictions [10] (fig. 2a). Figure 2 shows the paths and the $P_{||}$ (normalised to the peak of data) for the different evaporation paths. It is observed that processes involving emission of *d*-wave neutrons lead to much wider ($\Gamma = 260 \text{ MeV}/c$) distributions than the data. The *s*-wave emission ($\Gamma = 182 \text{ MeV}/c$) and *p*-wave emissions ($\Gamma = 165 \text{ MeV}/c$ for $p_{3/2}$) are in agreement with the higher momentum side of the data. The emission from $p_{1/2}$ ($\Gamma = 115 \text{ MeV}/c$) is narrower than the data.

The above discussion suggests that the configuration of 19 C having a ground-state spin of $1/2^+$ with the 18 C

Fig. 2. (a) The possible paths for emitting two neutrons from ¹⁹C by neutron evaporation through unbound resonances of the intermediate nucleus ¹⁸C. (b) The $P_{||}$ data (filled circles) for ¹⁹C \rightarrow ¹⁷C. The different curves show the Glauber model calculations for the respective emission paths shown in (a).

core in the ground state and/or bound excited states only, cannot explain the $P_{||}$ from two-neutron removal. The explanation of the data is possible with the neutron evaporation process through unbound excited states of the ¹⁸C core. Thus, in the core + n model for ¹⁹C($J^{\pi} = 1/2^+$), the ¹⁸C core needs to be placed in unbound excited states too. This probably suggests that ¹⁸C is not a good "core" for ¹⁹C. That maybe expected, since the ground state of ¹⁸C nucleus ($J^{\pi} = 0^+$) itself has quite a complex structure. In a ¹⁷C + n model, the ¹⁷C core must be mainly in the excited states (5/2⁺ or 1/2⁺) with the neutron in $d_{5/2}$ or $2s_{1/2}$ orbitals respectively, because the ground-state spin of ¹⁷C is known to be $3/2^+$.

It must be mentioned that the data might also be explained by other ground-state spin considerations for 19 C whose investigation is underway.

References

- I. Tanihata *et al.*, Phys. Lett. B **206**, 592 (1988); S. Fortier *et al.*, Phys. Lett B **461**, 22 (1999).
- E. Sauvan *et al.*, Phys. Lett. B **491**, 1 (2000); A. Ozawa *et al.*, Nucl. Phys. A **693**, 32 (2001); J.D. Goss *et al.*, Phys. Rev. C **12**, 1730 (1975).
- 3. A. Ozawa et al., Nucl. Phys. A 601, 599 (2001).
- 4. T. Baumann et al., Phys. Lett. B 439, 256 (1998).
- 5. V. Maddalena et al., Phys. Rev. C 63, 024613 (2001).
- 6. M. Chiba et al., Nucl. Phys. A 741, 29 (2004).
- 7. T. Nakamura et al., Phys. Rev. Lett. 89, 1112 (1999).
- 8. H. Sagawa et al., Phys. Rev. C 70, 054316 (2004).
- 9. Y. Ogawa et al., Nucl. Phys. A 543, 722 (1992).
- 10. B.A. Brown, private communication.